The Error Estimates of Direct Discontinuous Galerkin Methods Based on Upwind-Baised Fluxes
نویسندگان
چکیده
منابع مشابه
Superconvergence of Discontinuous Galerkin Methods Based on Upwind-biased Fluxes for 1d Linear Hyperbolic Equations
In this paper, we study superconvergence properties of the discontinuous Galerkin method using upwind-biased numerical fluxes for one-dimensional linear hyperbolic equations. A (2k + 1)th order superconvergence rate of the DG approximation at the numerical fluxes and for the cell average is obtained under quasi-uniform meshes and some suitable initial discretization, when piecewise polynomials ...
متن کاملthe effects of error correction methods on pronunciation accuracy
هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...
15 صفحه اولError Estimates for the Discontinuous Galerkin Methods for Parabolic Equations
We analyze the classical discontinuous Galerkin method for a general parabolic equation. Symmetric error estimates for schemes of arbitrary order are presented. The ideas we develop allow us to relax many assumptions freqently required in previous work. For example, we allow different discrete spaces to be used at each time step and do not require the spatial operator to be self adjoint or inde...
متن کاملA Posteriori Error Estimates for Discontinuous Galerkin Methods Based on Weighted Interior Penalties
Most of the discontinuous Galerkin (DG) methods are usually defined by means of the so called numerical fluxes between neighboring mesh cells, see [1]. Nevertheless, for the interior penalty (IP) schemes for second order problems it is possible to correlate the expression of the numerical fluxes with a corresponding set of local interface conditions that are weakly enforced on each inter-elemen...
متن کاملAlgebraic and Discretization Error Estimation by Equilibrated Fluxes for Discontinuous Galerkin Methods on Nonmatching Grids
We derive a posteriori error estimates for the discontinuous Galerkin method applied to the Poisson equation. We allow for a variable polynomial degree and simplicial meshes with hanging nodes and propose an approach allowing for simple (nonconforming) flux reconstructions in such a setting. We take into account the algebraic error stemming from the inexact solution of the associated linear sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2020
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2020.812219